"

9 Habitat Loss and Fragmentation

The area where a species can survive and meet their basic needs is known as its habitat. It is often useful to think of a habitat as a multi-dimensional space, characterised by suitable levels of many different environmental variables. Some species, including humans, are highly tolerant of changes in their environmental conditions; consequently, such generalist species find it relatively easy to move to a new area in the unfortunate event that their “home” is destroyed. In contrast, specialist species—those that can only survive within a narrow range of environmental conditions—often do not have anywhere else to go when their habitat is lost, and consequently they go extinct.

In a world where intact natural ecosystems are increasingly being altered by the activities of an ever-increasing human population and its consumptive needs, habitat loss has emerged as the number one threat facing biodiversity today. The expansion of human activity causes massive disturbances to natural ecosystems by altering, degrading, and outright destroying wildlife habitats. A number of specialist species have already been pushed to extinction. But even generalist species are increasingly falling victim to habitat loss: pushed out of their shrinking habitats, they come into conflict with humans while trying to meet their needs near urban centres and on agricultural land. Eventually our own lives will suffer, whether through lost ecosystem services, or sorrow for all the wonderful landscapes and species that have disappeared under our watch. In this chapter we delve into the causes and consequences of this increased competition for space between man and wildlife.

What is Habitat Loss?

Habitat loss is defined as the outright destruction of natural ecosystems, an inevitable consequence of expanding human populations and human activities. The theory of island biogeography (MacArthur and Wilson, 1967) offers a good explanation for why habitat loss drives species extinctions. Using oceanic islands as a model system, one of the theory’s main predictions is that large islands have more species than small ones because they can accommodate more individuals, which causes those species to be better buffered against extinctions. Empirical evidence offers strong support for this observation, also known as the species-area relationship. For example, large African islands generally hold more bird species than small islands (Figure 5.1). In addition, 62 of the 79 (63%) Sub-Saharan Africa’s species that went extinct over the past few centuries (IUCN, 2019) have been confined to oceanic islands, rather than the continental mainland which in effect functions like one very big island.

image

Figure 10.1: Area size greatly influences species richness, as evidenced by the bird species richness on several prominent volcanic islands around Africa. This observation, known as the species-area relationship, explains why habitat loss is so devastating to biodiversity—the more we reduce the amount of habitat left for species to live in, the more extinctions we will see in the coming years. Source: Avibase (https://avibase.bsc-eoc.org), following BirdLife International 2018 taxonomy, CC BY 4.0

The species-area relationship underpins much of conservation biology today. By applying the relationship’s principles to “islands” of suitable habitat surrounded by a “sea” of damaged or unsuitable habitat (the “matrix”), conservation biologists know that conserving large areas of suitable habitat is much more effective in protecting biodiversity. This is especially true when trying to protect species that have large home ranges, and/or occur in low densities: they can only live in habitat patches that are large enough to maintain viable populations. Observations of extirpations in differently sized habitat patches support this application. For example, researchers have found that nearly 50% of Ghana’s forest bird species are sensitive to habitat size, with 25% of species never found in forest patches smaller than 0.1 km2 (Beier et al., 2002). One Ghanaian species that seems particularly sensitive to habitat patch size is the icterine greenbul (Phyllastrephus icterinus, LC); due to habitat loss, this once-common species decreased by 90% during one study’s 15-year period (Arcilla et al., 2015).

It is important to understand that species living in ecosystems that are not conspicuously destroyed may also experience the effects of habitat loss, and hence suffer population declines. This is because habitat loss often manifests itself, at least initially, through less visible but equally threatening habitat degradation. For example, disturbances such as overgrazing do not immediately change the organization of dominant plants and other structural features of an ecological community. First, barely noticeable, a few sensitive habitat specialists disappear, being unable to cope with high levels of grazing. Soon, invasive species that can tolerate trampling start occupying the niches left open by the extirpated sensitive species. Eventually, when livestock eat the last remaining edible morsels of palatable plants not choked out by invasive species, all that is left of the once productive grassland is a field full of dense, unpalatable, invasive shrubbery.

What is Habitat Fragmentation?

As governments and industries implement measures to accelerate economic growth, ecosystems that formerly covered large, continuous swathes of land are being increasingly subdivided into smaller parcels by roads, farm fields, towns, and other human constructs. This process, known as habitat fragmentation, divides once large and widespread wildlife populations—many already suffering from habitat loss—into several increasingly smaller subpopulations. Habitat fragmentation thereby hastens extinctions, as each of these fragmented subpopulations are more exposed to a range of deleterious genetic effects than the previously large and connected population.

As if they are victims of double jeopardy, habitat fragmentation also impedes these smaller subpopulations’ dispersal and colonization abilities. Most species, especially those that occur in low densities, have large home ranges and/or live in ephemeral habitats, and must be able to move freely across the landscape to find shelter, food, water, and mates. A recent global review found that habitat fragmentation has already reduced the average distance of animal movements by two-thirds—from 22 km to 7 km—over the past few decades (Tucker et al., 2018). If they cannot move freely, these individuals cannot fulfil their needs and are at risk of extinction. Habitat interior specialists are particularly vulnerable to habitat fragmentation, as they are often reluctant to disperse over degraded or cleared areas, even if only a few meters wide (Blake et al., 2008; van der Hoeven et al., 2010). And yet, many habitat specialists face barriers much larger than a few meters.

Physical barriers that impede the ability of wildlife to move freely across the landscape also represent a form of habitat fragmentation. Dispersal impeded by human-constructed barriers, such as railways; dams; water-filled ditches; roads; and fences (Figure X.2), can have disastrous consequences for biodiversity. Consider, for example, Africa’s seasonal drylands. These areas were historically characterised by vast herds of migratory herbivores constantly moving from one area to another after fresh pasture. But as land management systems changed over time, the construction of roads and erection of fences to mark property boundaries impeded the ability of these herds to move freely after the resources they needed to stay alive (Durant et al., 2015; Hopcraft et al., 2015; Stabach et al., 2016). Restricted to only small parts of their range, these once-migratory animals were forced to overgraze the areas they already exploited, leading to extensive population declines. Through this process, Africa has already lost seven mass migrations, each involving millions of animals (Harris et al., 2009). Considering the economic stimulus provided by tourists visiting East Africa’s famous Serengeti-Mara herbivore migration each year, the loss of these seven mass migrations have come at a huge cost to economies elsewhere. Luckily, through diligent conservation efforts, all of Africa’s once-migratory herbivores have managed to persist in small and scattered populations throughout their range (Hoffmann et al., 2015).

image

Figure 10.2: Common wildebeest (Connochaetes taurinus, LC) at Kenya’s Maasai Mara that died after a fence stopped them from continuing their migration. Photograph by Teklehaymanot G. Weldemichel, CC BY 4.0.

Habitat loss and habitat fragmentation may even threaten the survival of species that are not as obviously dependent on large-scale movements for survival. For example, many plants cannot persist without seed dispersal. Unfortunately, many seed dispersers, including forest primates (Estrada et al., 2017) as well as frugivorous birds, such as parrots, orioles, turacos, and hornbills (Lehouck et al., 2009), are sensitive to habitat fragmentation. In one of the few studies looking at this issue in Africa, researchers found that valuable timber trees in Tanzania’s East Usambara Mountains are being extirpated as forest fragments become too small to support viable populations of fruit-eating birds (Cordeiro et al., 2009). The loss of these important seed dispersers will therefore have cascading effects on the plants that depend on them for survival. Eventually, if enough seed dispersers, or perhaps even a single keystone species, disappear because of habitat fragmentation, entire ecosystems may eventually collapse.

What are edge effects?

Edge effects are closely associated with, and exacerbate, the negative effects of habitat loss and fragmentation by altering environmental conditions in the habitat interiors. Dense woodlands, thickets, and forests are especially vulnerable to edge effects. Imagine a tropical forest, especially its large trees forming a continuous leafy canopy. These continuous canopies regulate the microclimate of a forest’s understory by blocking sunlight and wind and maintaining humidity during the day, but also trapping heat rising from the forest floor at night. When the forest’s trees are felled, the continuous canopy is fragmented, which in turn compromises the canopy’s ability to regulate the forest’s microclimate. Cleared areas, as well as forested areas directly adjacent to the cleared areas, will consequently be sunnier, warmer, windier, and dryer during the day, and cooler at night; these climatic changes also disturb nutrient cycles and biomass balances (Haddad et al., 2015). All of these changes further reduce the size of the forest patch to be smaller than the remaining canopy might indicate (Figure 5.3) as the new conditions prevent forest specialists such as shade-loving mosses, seedlings of late-successional trees, and humidity-sensitive amphibians from living in forest edges, leaving them with less interior forest habitat for which they must compete. Importantly, these microclimatic changes can penetrate a forest patch over much greater distances than one might expect. For instance, some forest birds in Uganda are sensitive to edge effects as far as 500 m from cleared areas (Dale et al., 2000).

image

Figure 10.3: An illustration showing how habitat fragmentation and edge effects reduce habitat area. (A) A 100-ha forest patch, where edge effects (grey) penetrate 100 m into the forest: approximately 64 ha of the forest is still core habitat suitable for forest interior species. (B) The same 100-ha forest patch now bisected by a road and a railway. Although the road and railway take up very little area, it increases the patch’s perimeter: area ratio. The resulting edge effects leave more than half of the forest unsuitable for interior species. After Primack, 2012, CC BY 4.0.

Edge effects also create several additional threats to the forest species already suffering from altered microclimates. Notably, disturbed edge conditions present a favourable environment for colonization by fast growing and fast reproducing invasive species. (Threats posed by invasive species are discussed in more detail in Chapter 12). Those forest species that are not displaced by the altered microclimates and invasive species also face elevated predation risk.

The most devastating impact of edge effects is that edge effects beget further edge effects in a positive feedback loop leading to a rapidly disappearing ecosystem. First, expanding invasive (and generalist) species populations at habitat edges can easily overwhelm more sensitive habitat specialists. As habitat specialists are displaced at the contact zones, microclimatic conditions change, which allows for invasions even deeper into the fragmented habitat patch. In this way, invasions systematically penetrate deeper and deeper into the forest as microclimates are disturbed, habitat specialists are displaced, and new contact zones are created. The forest plants that die in the process also increase fuel loads, which, combined with drier and windier edge conditions, create an environment increasingly favorable for fire disturbance. Whether from lightning strikes or human activities, subsequent fires burn hotter and over a larger area (van Wilgen et al., 2007), disturbing and destroying more and more habitat each time. Through these mechanisms, edge effects can degrade entire ecosystems over time, harming both the native species and human livelihoods that depend on those areas.

Drivers of Habitat Loss and Fragmentation

At present, the biggest driver of habitat loss is agriculture and urbanization. Farmers have always cleared lands to meet their subsistence needs. Much of this clearing was traditionally and historically done in the form of slash-and-burn agriculture (also called shifting cultivation, Figure X.4). To prepare land for crops, smallholder farmers would first cut down trees to clear the land and to obtain fuel wood. The remaining vegetation would then be burned away to release carbon and other nutrients, which increases land fertility. Farmers would grow crops on these cleared areas for two or three seasons. Then soil fertility would diminish, crop production would decline, and the farmers would abandon the area and clear new land, giving the natural ecosystem on the abandoned land time to regenerate. Feeding and accommodating the activities of a growing human population has led to an increasing number of natural ecosystems replaced by agricultural land and advances in agriculture allow those lands to continue to grow crops without reverting to a natural ecosystem. An increasing number of people also started abandoning their rural lifestyles for cities in search of jobs, financial freedom, and an easier life leading to increased urbanization.

image

Figure 10.4: On a cloudless day, multiple fires raging in Mozambique’s Zambezi River delta region can be seen from the International Space Station. Slash-and-burn techniques are often used to clear natural ecosystems for grazing and crops. Overly frequent fires, however, do not allow for ecosystem recovery, and are devastating to fire-sensitive ecosystems, such as tropical forests; instead of recovery, every fire creeps deeper and deeper into the forest until the entire ecosystem has been degraded. Image by NASA, https://commons.wikimedia.org/wiki/File:Zambezi_delta.jpg, CC0.

While land clearing for smallholder agricultural needs continues to be an important driver of habitat loss (Tyukavina et al., 2018), its impact is increasingly dwarfed by the demands of commercial interests (Austin et al., 2017). The impact of land grabbing is of particular concern in Africa. Foreign companies from Asia and other parts of the world have acquired millions of hectares of land across Africa to stake a claim on the continent’s rich natural resources, and to produce food and biofuels for their own people (von Braun and Meinzen-Dick, 2009). The foreign stakeholders, who often strike these land deals through loan agreements at the governmental level (i.e. with little to no local input), typically prioritise their own needs and profits over local interests with little care for the environment. These deals thus often end with a country saddled with debt they struggle to repay, and environmental damage that will take generations to reverse. Moreover, the foreign companies often employ migrant labourers with fewer protections and rights, compared to local peoples. In the process, while a modest number of local people may benefit from job creation, technology investment, and infrastructure development, a large number of local people become disenfranchised and displaced from the lands that previously supported their livelihoods. These foreign investments are a type of neocolonialism for their resemblance to Africa’s earlier colonial era. They not only drive large-scale habitat loss, but in many instances also leave local people impoverished and desolate (Koohafkan et al., 2011).

Infrastructure developments are also becoming an important driver of habitat loss. Offering access to previously unexploited areas, roads are perhaps the single biggest driver of habitat loss facing Africa’s last remaining wildernesses (Figure X.5). As prominent tropical biologist Bill Laurance eloquently noted, “Roads usually open a Pandora’s Box of environmental problems—such as illegal fires, deforestation, overhunting and gold mining” (Laurance et al., 2014). A vast, growing body of literature from Africa supports these claims. For instance, research in the Congo Basin has shown how deforestation generally occurs within 2 km from roads (Mertens and Lambin, 1997)—more roads thus mean more deforestation. Roads also facilitate other drivers of forest loss, including the spread of invasive species, human settlements, fire, and pollution (Kalwij et al., 2008; Potapov et al., 2017). Providing access points for hunters, roads also facilitate unsustainable hunting; a recent review found that the wildlife reductions due to hunting could be detected as far as 40 km from the nearest road (Benítez-López et al., 2017).

image

Figure 10.5: New road developments, such as this one in the Congo Basin, represent one of the most immediate threats to biodiversity conservation. Road development provides access to previously unexploited areas, allowing more areas to be hunted, logged, farmed, and settled; increased human activity also exposes these areas to invasive species and pollution. Photograph by Charles Doumenge, https://www.flickr.com/photos/internetarchivebookimages/20689353531, CC0.

Contributors and Attributions

Modified from the following sources:

Conservation Biology in Sub-Saharan Africa: The scramble for space. By Open Book Publishers,  Chapter 5 by J.W. Wilson and R.B. Primack, licensed CC BY 4.0

Additional references and citations from the above sources can be found in References in the backmatter.

10. Habitat Loss and Fragmentation is shared under a CC BY-NC-SA  license

License

Wildlife Ecology and Conservation Copyright © by Kyle McCarthy; Angela Holland; and Phillys Gichuru. All Rights Reserved.